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\/ Preface

The purpose of this study was to investigate the combined effects of optical

activity and linear birefringence on photorefractive crystals. The relation of input-
output intensity was determined. These results were discussed with regard to the

operation and optimization of the conducting PRIZ.

The study focused on the crystal Bi';;SiOg;1 (BSO) in order to correlate re-
sults with current experimental work at AFIT. The combination of optical activity
and the photorefractive effect caused the crystal to be elliptically birefringent; this
birefringence was modeled using Jones matrices for computer simulation. The sim-
ulation results showed that optical activity does have a noticeable effect, but for the
application investigated the effect was small enough that it could be ignored. Rec-
ommendations were made to improve the quality of the output image of the PRIZ.
More work should be performed in this arca to investigate other app]icatior}s of this

1A~

henomenon and also different crystal materials. Bf;ngu?k coneger s T
p ’ Syheon of.zg(- e /r«jwu\ /é,-——
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Abstract

This study characterized the effect of optical activity on the input-output prop-
erties of a photorefractive material. Optical activity is a material property that
causes incident linearly polarized light to rotate as it travels through a crystal. The
photorefractive effect causes a linear birefringence to develop in the crystal as a
result of photoconductivity and the linear electro-optic effect The combination of
optical activity and linear birefringence was investigated using two consistent rep-
resentations: the Poincaré sphere and Jones matrices. The results showed that the
combination of the two effects is a nonlinear superposition which results in an cllip-

tically birefringent crystal.

The two representations were used to investigate the effects of optical activity
in an imaging device called the PRIZ, which uses the optically active, photorefrac-
tive crystal BSO. The orientation of the eigenstates of the (111) PRIZ investigated
are dependent on the direction, but not the magritude, of the internal transverse
electric field. Conversely, the amount of linear birefringence is dependent on only the
magnitude of this field. Analysis of the input-output characteristics showed that for
small values of linear birefringence close to the value of optical activity, the output
intensity for elliptical birefringence was noticeably different from that of linear bire-
fringence. Results also showed that elliptical input polarization exhibited directional

filtering similar to that already reported for linear polarization, while circular input

did not.

Trials were also run using the laboratory configuration of an analyzer biased
to compensate for the optical rotation. The results showed that both lincar and
elliptical birefringence exhibited directional filtering and an asymmetric output in-

tensity. The conclusions drawn from these results were that for the PRIZ imaging

device, circular read beam input polarization is the best to use because it causes no

vil




directional filtering. Also, for the PRIZ application of BSO discussed, the effects of
optical activity result in a minor deviation from the case considering only the linear
birefringence response. The recommendations from this study are to use circular
input polarization for better imaging quality, and investigate other materials and

applications involving optical activity.
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OPTICAL ACTIVITY AND ITS INFLUENCE ON
PHOTOREFRACTIVE MATERIALS

I. Introduction

Overview

Photorefractive materials have many applications of interest to the Air Force.
When used as electro-optic spatial light modulators (ESLM), they can record two
dimensional images and provide the high incoherent-to-coherent conversion rates of
data necessary for fast optical processing. Bismuth Silicon Oxide (Bi;25102), or

BSO, is a crystalline photorefractive material in wide use today.

The crystal symmetry of BSO is cubic, so it will behave isotropically when
no forces are applied. Because of its molecular structure and the fact that it is
non-centrosymmetric, BSO also exhibits a property known as optical activity. Opti-
cal activity causes the orientation of linearly polarized light, normally incident and
traveling along a special direction of the crystal known as the optic axis, to rotate

ttrough some angle 0 without the polarization state being changed.

When a longitudinal clectric field is applied to a BSO crystal cut in the (111)
orientation (see Appendix A), the linear clectro-optic effect causes the crystal to
become uniaxial. Also, if light of sufficient strength is incident on the crystal. the
photorefractive effect will cause an induced transverse electric field. The transverse
field will, in turn, cause the crystal to be biaxial, inducing a lincar birefringence in

the crystal.

Since photorefractive BSO is optically active as well as linearly bircfringent.

the combination of these two effects is of major interest. It turns out that the

K
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combination is actually a nonlinear one, suggesting that these are not independent
effects. Actually, this is not quite true, because the optical activity can be separated
from the combination by measurement along an optic axis. This mixture of optical
activity and linear birefringence results in a crystal having what is known as elliptical

birefringence.

BSO analysis at AFIT has not considered the effect of optical activity on ex-
perimental results. This aspect needs to be addressed to help interpret experimental

results already obtained and to guide future work with optically active materials.

Problem Statement

This thesis will characterize the effect of optical activity on the input-output
properties of a photorefractive, optically active material by comparing a lincarly
birefringent crystal (ignoring optical activity) with an elliptically birefringent one
(including optical activity). It will be restricted to the plane wave propagation of
normally incident, polarized monochromatic light through a homogeneous, lossless

medium.

The material to be investigated will be photorefractive BSO, and the crystal
configuration will be the one tested at AFIT for the PRIZ spatial light modulator
device. (PRIZ is a Russian acronym for image transformer.) The PRIZ device has
been investigated by Gardner (3) at AFIT for imaging applications. Appendix A
describes the laboratory setup, along with a discussion of the theory of operation for

this imaging application.

The imaging operation of the PRIZ involves placing the crystal between a
crossed linear polarizer-analyzer pair, where the analyzer provides an intensity vari-
ation of the image. This type of operation requires high image contrast, and unfor-
tunately involves filtering that is dependent on the direction of the applied internal

field (2:3850-3851).
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Background

Optical Activity Optical activity causes the rotation of linearly polarized light
along an optic axis. This is because the eigenstates of an optically active material are
left- and right-circularly polarized. (Linear polarization can be represented by the
sum of left and right circular polarization, so the linear light which travels through
the crystal can be represented this way.) The circular birefringence of the material
causes one of the circular modes to propagate faster than the other. When exiting the
crystal, there are still two circular modes which combine to give linear polarization,
but the difference in phase velocities causes the resultant linear polarization to be

oriented at some other angle than it initially had (Figure 1) (5:309).

The amount of rotation of the polarization due to optical activity can be ex-
pressed in terms of the optical rotatory power, p, which is given in radians per unit

thickness. The expression for the rotatory power is

e
= —(n; — n, 1
p=5(u—n) (1)
where ) is the wavelength of incident light, and n; and n, are the indices of refraction
associated with the left and right circularly polarized eigenstates, i.e. the normal

modes for a purely optically active BSO crystal.

The optical rotatory power can be measured very easily using linearly polarized
light and a linear- analyzer crossed to the incident polarization. As the incident
linear light travels along an optic axis, the orientation will be rotated. If no rotation
occurred, then the crossed analyzer would extinguish the light. The analyzer then
should be rotated from its crossed position to the point of extinguishing the output.

thus giving the amount of rotation.

Rotatory power is easiest to measure in crvstals with cubic symmetry. which
have no preferred direction of optic axis. Even with the combination of other effects.
such as linear birefringence, the rotatory power can be determined in all optically

active crystals, provided a direction of an optic axis can be specified.
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Figure 1. Optical Activity in a crystal along the optic axis (the optic axis dircction
is out of the page at O); (a) linear state C composed of circular states
A and B at the entrance to the crystal (b) at the exit point, linear state
C’ is rotated because of different phase velocities with which A and B
traveled.

Photorefractive Effect A photorefractive material uses photoconductivity and
the linear electro-optic effect to change the material’s index of refraction where in-
cident light falls on it (12:789). The linear electro-optic effect arises from an exter-
nally applied electric field. Materials which exhibit this effect have third rank tensor
components known as electro-optic coefficients, which vary according to crystal sym-

metry. These coefficients, when multiplied by the applied electric ficld, modify the




impermeability tensor b of the material, defined by

;13—00
b= 0;170 (2)

2

0 0 %

3

where b is the inverse of the relative dielectric tensor, and the n’s are the indices of
refraction along the three crystallographic axes. The introduction of the electro-optic

terms will cause b to be modified, in turn changing the indices of refraction.

A sufficient amount of photon energy incident on the crystal will cause electron-
hole pairs to be excited from trap sites in the material, and then drift under the
influence of the externally applied field. The charges will be retrapped in the crystal
bulk, resulting in a space-charge field in the crystal. This field will then act in
addition to the applied field, and cause local changes in the index of refraction

(4:206).

Polarization The concept of polarization underlies many areas of this study,
and must be discussed here in some detail. Linearly polarized light is a well un-
derstood and utilized concept. Somewhat less used are the ideas of circular and
elliptical polarization, since they are harder to produce and are not as analytically
convenient as linear polarization. However, circular and elliptical polarizations are
very important because they describe the propagation of light through optically

active, photorefractive crystals.

The polarization of the electric field vector E can be defined according to how

the tip of the vector appears to rotate as it approaches an observer.

Elliptical polarization occurs when the tip of E appears to trace out an ellipse
as it travels toward the observer. Alternatively, it can be defined as when the two
orthogonal components making up the vector have a phase difference other than 0

or 7 radians.
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L Circular polarization is a special case of elliptical polarization. It occurs when
the tip of E traces out a circle. It can also be defined by the vector components

being out of phase by +7/2 and equal in magnitude. Both circular and elliptical

b polarization can rotate in either a left- or right-hand direction, depending on which

component is leading the other.

Linear polarization is another special case of elliptical polarization. This occurs

when the tip of E stays in a plane containing the direction of propagation, or when

the vector components are 0 or multiples of r radians out of phase.

The phase velocity of light traveling through a crystal depends on both its
polarization state and its direction of propagation. In general, the polarization of a
wave traveling through the crystal will change. For a given direction of propagation,
at most two waves of specific polarization, orthogonal to each other and the direction
of propagation, can exist within the crystal. These waves have well-defined phase
velocities and polarizations, and are known as the eigenstates, or normal modes, of
the crystal. Any incident polarization that is identical to one of the eigenstates of

the material will emerge unchanged (16:71-72).

The eigenstates are related to two independent indices of refraction that exist
in birefringent materials. The concept of birefringence, or relative phase difference
between the components of the light, stems from these two indices. Birefringence,
like polarization, can be linear, circular, or elliptical, depending on the material
properties. The most common type is linear birefringence, where the eigenstates
of the crystal are two orthogonal, linearly polarized states. {The magnitude of the
difference between the indices determines the amount of phase difference.) Likewise,

circular birefringence occurs when the eigenstates of the crystal are two circularly

polarized states. Two independent indices of refraction still exist, but each is now
related to one of these circular states. Birefringence results from the phase difference
between these two circular states. Finally, elliptical birefringence involves elliptically ;ﬁ

polarized eigenstates. These are two orthogonal states related to two indices of




refraction, and the same idea of phase difference applies.

Depending on the crystal symmetry, there are one, two, or an infinite number
of directions in the crystal where the two indices of refraction are equal, causing no
phase difference to occur. These directions are known as the optic axes. Uniazial
crystals have one optic axis, biazial crystals have two, and isotropic crystals have
an infinite number. Because the indices of refraction are equal along the optic axis
direction in a linearly birefringent material, incident polarization in this direction

will not change form.

Approach

This study will address the problems of characterizing elliptically birefringent

BSO and improving the performance of the PRIZ imaging device.

Chapter II will look at the mathematical representation of an elliptically bire-
fringent crystal. Two relatively easy, yet still very accurate, methods of representa-

tion will be discussed.

The first method is known as the Poincaré sphere. This is a sphere of unit
radius which represents every type of polarization through points on the sphere.
Propagation of polarization through birefringent crystals is handled by merely ro-
tating the sphere about the axis containing the eigenstates (13:2,12). The Poincaré
sphere is extremely easy to use and gives a good intuitive feel for what happens

physically to light after it propagates through an elliptically birefringent material.

The second method of representation is known as the Jones matrices. These
matrices were developed to represent the optical elements of a system, so that compu-
tations involving polarized light passing through a system would merely be a matter
of multiplying matrices (6:671). A single Jones matrix can also represent the dif-
ferent properties of a crystal, such as optical activity and linear birefringence. The
Jones matrix method will be used to analyze linear and elliptical birefringence. due

to its ease of calculation and parameterization.




Chapter 111 analyzes variations in output intensity for linearly and elliptically
birefringent cases relating to the PRIZ configuration. Elliptically birefringent BSO
will be shown to have some marked differences from the linearly birefringent case.
Some previously unexplained experimental results will also be shown to compare

very well with the results of computer simulation.

Finally, Chapter IV provides the conclusions resulting from the analysis. It
also includes some recommendations for experimental procedures which could be

applied to operations involving the PRIZ device previously described.




II. Elliptical Birefringence

This chapter will discuss two separate but consistent methods of representing
a crystal which exhibits both optical activity and linear birefringence (BSO in par-
ticular). The two ways of representing this elliptically birefringent crystal include
the Poincaré sphere and Jones matrices. The Poincaré sphere will be addressed first
in order to give an intuitive feel for the effect an anisotropic material has on polar-
ization. The Jones matrix method will then be used to provide a matrix expression
for the elliptically birefringent crystal; the matrix will allow computational ease and
analytical convenience. (Appendix B contains a description of the mathematical ex-
pression for this crystal in terms of Maxwell’s equations; the two methods described

in this chapter are consistent with the solution described in Appendix B.)

Poincaré Sphere

The Poincaré sphere was conceived by Henri Poincaré about 1892 to conve-
niently represent polarized light. Elliptically polarized light is the most general case
of polarization. Therefore, a polarization state can be described by the orientation
of the major axis of the ellipse, and the ellipticity or ratio of the minor axis b to the
major axis a (Figure 2) (13:5). The orientation of the major axis can be specified
by an angle ¢ from the horizpntal axis, while the ellipticity can be defined by an
angle w, such that tanw = b/a. Thus, any state of polarization can be completely
described by ¢ and w, where ¢ ranges from 0 to 7, and w ranges from —7/4 to
x /4. The states of polarization can be represented on a sphere of unit radius having
latitude of 2w and longitude of 2¢. Therefore, the surface of the sphere is completely
covered as 2¢ goes from 0 to 27, and 2w goes from —7/2 to /2 (Figure 3). All
linear polarization states are located on the equator, while left and right circularly
polarized states are at the opposite poles. Also, the two states on any axis through

the origin are orthogonal, including opposite senses of rotation (13:2).




Figure 2. Elliptically polarized light

The Poincaré sphere is well suited to determining the change in polarization
of light passing through an anisotropic crystal. For example, a linearly birefringent
crystal will have two linear, orthogonal eigenstates. These states would be depicted
on the Poincaré sphere by H and V for horizontal and vertical, respectively (Fig-
ure 3). If a linear polarization other than these two is incident, the two components
will undergo a phase difference §, generally resulting in elliptical light being pro-
duced. This is easily predicted on the sphere by starting at the point of the incident
light P, and rotating it counterclockwise about the HV axis (if H is the faster state)

a value of §; the resulting point P, is the emerging polarization state.

Likewise, if a purely optically active crystal causes a phase difference § between
the left and right circular modes, the incoming polarization will be rotated about
the polar axis by 6. Thus, only the orientation of the polarization will change, while

the ellipticity remains the same (13:6).

10




Figure 3. Poincaré Sphere

When determining the properties of an elliptically birefringent crystal, it is
helpful te think of this material as being composed of alternating infinitesimal layers
of strictly optical activity and strictly linear birefringence. (Although this should not
be assumed for a rigerous solution, it nevertheless iz a good approximation.) Suppose
now that the two eigenstates of the linearly hirefringent laycr are represented by W

and N in Figure 4. where M is the fast axis. Given that the linear birefringence

Figure 4. Normal modes for elliptically birefringent crystal

11
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is § and the optical rotation is p, the effect of going through both elements is a
rotation by é about M N, followed by a rotation of 2p about LR. Since these layers
are infinitesimally thick, the order of the rotations doesn’t matter. Furthermore, the
sum of the infinitesimal rotations is a vector addition. If the resultant is defined as
A, then

A? = 6"+ (2p)° (3)

This equivalent rotation A is about an axis EF, located in the plane of LR and
M N, and situated at the angle 2y from M N given by

2
2x = arctan _68 (4)

Thus, for an optically active, linearly birefringent crystal, the normal modes are
the elliptical states represented by E and F. The crystal is therefore elliptically
birefringent (13:11-12).

The Poincaré sphere is useful for determining the input-output polarization
characteristics for crystals, but the major work of this study is in determining inten-
sity variations of the output. As a result, operations involving Jones matrices will

now be required. A discussion of these matrices is therefore in order.

Jones Matrices

The Jones calculus was developed to represent each element of an optical sys-
tem in terms of a matrix M. The electric vector E of the incident light on this element

is defined by
X

Y

i

i

(5)

where X and Y are the two complex transverse components of the vector. Each M
matrix is defined as a 2 x 2 element matrix so that the electric vector E’ emerging

from the optical element is

E'=ME (6)

12




The method of Eq(6) describes the states of polarization only between optical ele-
ments of a system, since M defines the overall behavior of the element. In order to
deal with elements containing a number of different optical effects, Jones developed
an approach which allowed the state of polarization to be determined at every point
within the element. This approach used what he called N matrices (6:672), and is

described as follows.

Consider the matrix M, .., which describes the properties of a thin layer of an

optical element between z and 2. From Eq(6),
E.z’ = Mz.z'Ez (7)

The N matrix at the z coordinate represents an infinitesimally thick layer of the

element defined by

. M, -1
N, = lim /22—
tiesz 3! —

(8)

where [ is the identity matrix. If M, is the matrix of the element up to the coordinate
z, then

M, . = M, M! (9)
Substituting Eq(9) into Eq(8) gives
N = (dM/dz)M™! (10)

where the subscript z is no longer needed. In determining a series relation for M in

terms of N, successive differentiation of Eq(10) is used to give

M = exp(Nz) (11)

To represent an arbitrary homogeneous crystal as a combination of simple
properties, consider that an M, matrix of a very thin slice of the crystal is very close
to the identity matrix. The multiplication order of these thin M, slices necessary

to approximate the crystal M matrix is thus immaterial. Each of these M, matrices

13




can be represented by a product of factors which relate to simple optical properties.

The N matrices are a good way of representing these properties.

Jones defined eight unique types of crystalline behavior which could be repre-
sented by N matrices. These include phase retardation, absorption, rotation, linear
birefringence, and dichroism. If each of these eight matrices are defined as Ny with

related thicknesses 7, then N is a weighted average of all the N}’s:

N L Ny
N==——- 12
S (12)
The M, matrix may be given by
M, =1+ N7 + O(r?) (13)

where 7 is the total thickness of the sandwich of eight properties, and O(7?) is a

second order term in 7.

Now consider a number q of these M, sandwiches piled together. The M matrix
of the pile is
M=M! (14)

As the number ¢ increases without limit, the thickness 7 goes to zero. So the limit
of Eq(14), after substituting in Eq(13), must be calculated as 7 goes to zero. The

result leads to

M exp('T z) cosh QNZ + %(nl — ng)-’i—"—ho—?,-ﬁ n, singQsz
= N . .
n3smlégnuz cosh QNZ - %(n1 — nz)f%%.ﬁ
(15)

where n;, n,, n3, and n, are clements of the N matrix; Ty is the half-trace of N
defined as 1(n; +n2); Qu is the discriminant of N defined as ((n; —n;)? + nang)'/?,

and N is substituted for N (6:676).

Jones made a simplification by assuming that the eight slices of the sandwich
were all of equal thickness, and the eight simple properties were represented by ©

matrices. N is then equal to the sum of all the © matrices which apply to the crystal.

14




The © matrices for optical rotation and linear birefringence are given as
0 -1
Oor=1p (16)
1 0
where p is the optical rotatory power, and
: 0
O =¢ . (17)
0 —:
where £ is one half of the relative phase retardation per unit thickness (6:682). The

N matrix for the linear birefringent case is then

_ i€ 0 |
Nip = (18)
0 -3
Substitution of Eq(18) into Eq(15) gives
et 0
Mpg = , (19)
0 e ¥

The N matrix for the combination of optical activity and linear birefringence is

. i§ —p
Noas+rs = . (20)
p -t
and substitution into Eq(15) gives
cos(I'z) + % sin(I'z) —£&sin(lz)
MoasLs = _ r ; _ (21)
£sin(l'z) cos(I'z) — #sin(T'z)

where ' = (£2 + p?)'/2. Since £ is one half the linear birefringence &, I' is related to
A of Eq(3) by
|Al = 2T

—
o
[ EV]
—

In summary, the representation of an elliptically birefringent crystal was devel-

oped. An electromagnetic description was initially used to derive the phase difference
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A between the eigenstates of this type of crystal. The Poincaré sphere was used to
show that the eigenstates are elliptically polarized, making the crystal elliptically
birefringent. The Jones matrices were then discussed, where the optical properties
of the crystal were represented in terms of an M matrix composed of a product of
matrices depicting many slices of the crystal. These slices were in turn composed of
eight N matrices; an N matrix, a weighted average of the eight N matrices, was made
up of a sum of eight © matrices. The © matrices define unique optical behavior.

Thus, an M matrix for an elliptically birefringent crystal was developed.

With the results of Eq(21), it is now possible to analyze the behavior of ellip-
tically birefringent BSO in relation to the PRIZ operation. The next chapter will
compare this case with the linearly birefringent case of Eq(19), in order to determine

the effect of optical activity.
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III. Comparison of Elliptical and Linear Birefringence

This chapter will discuss the configuration used to represent the PRIZ imag-

ing device in terms of Jones matrices. Related discussions will include polarizers,
orthogonal analyzers, and variables and parameters used in the analysis. Results
of analysis using the commercial software package MathCAD will be presented and

discussed. Finally, analysis related directly to experimental results will be given.

As previously mentioned about the PRIZ, the read beam is essential to the
imaging operation of the device. Recall that the read beam is usually linearly polar-
ized; this, however, is not a necessity. Although circular and elliptical polarization
are harder to produce, the luxury of computer analysis allows the investigation of

both these cases to see if the benefits outweigh the hardships.

Recall also that the imaging operation requires an analyzer orthogonal to the
polarizer to give intensity variations of the image. The importance of the polarizer-

analyzer pair suggests a detailed discussion here.

Polarizer-Analyzer Pairs

Producing linear light is very simple using sheet polarizers, which are easy to
make and use. A circular polarizer can be made using a linear polarizer and a quarter
wave plate aligned so the transmission axis of the polarizer bisects the fast and slow
axes of the quarter wave plate. This causes the two emerging vector components to he
of equal magnitude and 7 /2 out of phase (14:39). Elliptically polarized light can also
be produced using a lincar polarizer and quarter wave plate (13:4). The ellipticity
of the polarization ellipse is determined by the angle of the transmission axis of the
linear polarizer, and the oriecntation of the ellipse is determined by the orientation

of the quarter wave plate. (In fact, there are an infinite number of combinations of

the linear polarizer and wave plate, so that the selection of a reference cocrdinate

system is important in producing the elliptical light.) The sense of rotation of the
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polarization depends on the relative positions of the fast and slow axes to the incident

linear polarization (Figure 5).
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Figure 5. Elliptical polarizer consisting of linear polarizer and quarter wave plate

A linear analyzer can be made orthogonal to the linear polarizer by simply
rotating the transmission axis of the analyzer by 7 /2 with respect to the polarizer
transmission axis. Then if nothing happens to the beam in between the pair, there
will be a total extinction of the light at the output. It might be assumed that an
orthogonal elliptical analyzer could be set by a simple rotation of 7 /2 also. However,
the orthogonality must include an opposite sense of handedness. Using the Jones
matrices, consider the eigenvectors of the elliptical polarizer to be

m -n*

and (23)
n m*

where m and n are complex components, in general. The Jones matrix of the polar-
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izer is then

mm* mn*
] (24)
m*n nn* |
so that the first state of Eq(23) would emerge from the polarizer unchanged, except

for a constant, but the second state would be extinguished (Eq(25)) (14:167).
] I 101

. . m mm* mn* m
(mm* + nn*) =
n m*n nn® n
- b -’ e
1 0 17
0 mm* mn* -n*
= (25)
0 Lm"n nn* i m”

The matrix of an orthogonal elliptical polarizer, which would pass the second state

of Eq(23) and extinguish the first, is

- -

nn* —mn (26)
m*n  mm*

The matrix of Eq(26) causes an interchange of major and minor axes with
Eq(24), while also providing an opposite sense of rotation. The elliptical polarizer
case degenerates directly to the circular polarizer where the magnitude of m and n
are now equal. An interesting fact about the orthogonal circular polarizers is that
relative orientation to each other doesn't matter, whereas the orientation between
the elliptical polarizers does because of the interchanging of the major and minor

axes.

Variables and Parameters

The next area to discuss is variables and parameters used for the analysis. It is
interesting that for the PRIZ configuration of BSO the orientation of the cigenstates
is a function of the direction of the transverse internal field. This dependence is a
key to the imaging results of the crystal, so the orientation of the eigenstates shall

be one of the variables of interest, rotating from 0 through 2.
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The following discussion of the orientation of eigenstates will at first deal with
linear birefringence; this is done to use the index ellipsoid method to simplify the
explanation. The direct extension of these results to elliptical eigenstates will be

demonstrated using the Poincaré sphere.

Recall the impermeability tensor b mentioned in Chapter I. If a finite internal

field is applied to the crystal, this tensor is modulated:
b(E)=b+ Ab (27)

where Ab;; = Y i 1ijx Ex, Ei are the components of the internal electric field, and ryj
are the electro-optic coefficients previously inentioned. For BSO, the only nonzero r

elements are 7,3, = rj3; = r153. The tensor for b(E) becomes

L Dby Aby
BE)=| Aby % Dby (28)
Dby Nbyy %

The index ellipsoid equation related to Eq(28) is
Z Z b;j(l-‘}'.):rgx,- =1 (29)
i

Equation (29) is the index ellipsoid equation for the (zi, z2, z3) coordinate system,
which here represents the principal coordinate axes. But the PRIZ device is oriented
in the (111) coordinate system, represented here by (z}, 25, z3). The transformation

of Eq(29) into this new coordinate system leads to
PIPMACHELAS! (30)
i

where b:J(E) is the transtormation of b;j(E) into the primed coordinate system.

In this new coordinate system, zj is the direction of propagation, so sctting it

to zero gives

b;1($;)2 + 2b'n(:£;1"2) + b’zz(l‘;)z =1 (31)

20




which is an equation of a rotated ellipse. This ellipse in fact contains all the infor-

mation necessary to describe the propagation of plaﬁe waves through the linearly
birefringent crystal. The lengths of the major and minor semi-axes represent the
indices of refraction for the two normal modes of propagation, while the directions
of the axes indicate the polarization orientations of these two modes. It turns out
that, given b as a function of the internal field, the orientation of the normal inodes

with respect to the z'-coordinate system is

SHES

where a is the angle between the direction of the normal! modes and the (z}, z})
axes, and 0 is the angle between the z} axis and the transverse component E, of
the internal electric field (Figure 6) (9:649). The results of Eq(32) show that the
orientation of the eigenstates are directly related to the direction of the internal
transverse electric field; it also shows that the magnitude of the field does not affect

the eigenstates.

The extension of Eq(32) to elliptical eigenstates can be done using the Poincaré
sphere. Recall from Figure 4 that the eigenstates of an elliptically birefringent crys-
tal are located in the plane containing the axes for optical rotation and linear bire-
fringence. Now considering Eq(32), as the direction @ of the internal field rotates
through 27 radians, the orientation « of the eigenstates will rotate through 4.
For linearly birefringent crystals, this is shown on the Poincaré sphere by following
the polarizations on the equator around the sphere. For the elliptical birefringence,
the eigenstates are in the same longitude as the linear states, so the orientation of
the major axis of the ellipse is the same as the orientation of the lincar cigenstate.
Equation (32), then, holds for elliptical birefringence also, where a is now the angle

between the major axes of the normal modes and the (z!, z,) axes (Figure 7).
J 12 L2 g

The retardation of the two linear normal modes for the PRIZ orientation was




Figure 6. Orientation of eigenstates « is a function of direction 8 of internal trans-

verse field E;

given by Owechko and Tanguay (9:650) as
§= 2_1.(2/3)1/211%&(1 (33)

where n is the refractive index of BSO, r is the electro-optic coefficient, E; is the
magnitude of the induced transverse field, and d is the thickness of the crystal. The
interesting thing to note here is that the retardation is a function of the magnitude
only of the transverse electric field, not the field direction. The other variable that
will be considered, then, is the amonnti of birefringence induced in the photorefractive

¢rystal by light incident on the crystal.

Parameters used in the first part of the analysis (i.e. varying the orientation

22




Figure 7. Orientation a of elliptical eigenstates

of the eigenstates) will include different forms and orientations of input read beam
polarization, the amount of the linear birefringence é, and the amount of optical
activity p. Parameters used in the second part of the analysis (i.e. varying the lincar
birefringence) will be discussed after results from the first part of the analysis are

presented.

Because the form of the read beam polarization is not restricted, the input
polarizations investigated will include linear, circular, and elliptical. This brings
up a question of what coordinate system to use in terms of the input polarization.
Since the Jones matrices of Eqs(19) and (21), representing linear aﬁd elliptical bire-
fringence, are referenced in the crystallographic coordinate system, this system is a

logical choice for use as a reference for the entire train of optical clements,

Linear read beam polarization will be the first type investigated. Since optical
activity is usually ignored, the crystal itself is assumed to be linearly birefringent; the

incident polarization is of the same form as the cigenstates. To create an analogous
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situation for elliptical birefringence, the case of incident elliptical read beam polar-
ization will contain elliptical eigenstates. These eigenstates are determined from the
eigenvalue relation involving the matrix of Eq(21). Diagonalization of this matrix

leads to the two eigenstates

' and e (34)
F—¢ [+¢

So input polarization of either of these forms would emerge from the crystal repre-

sented by Eq(21) unchanged in magnitude and phase difference (15:158-159).

The linear birefringence in Eq(21) is represented by £. In fact, this is actually
one half the relative phase difference § between the linear eigenstates. In most
applications involving the linear electro-optic effect, voltages are applied so that &
rarely exceeds = radians (a half wave plate). Therefore, in this study, § will be
considered to have values of 7 or less. Because ¢ is per unit thickness, and the
experimental crystal is 1/2 mm thick, the values of £ will represent 6. So the values
of ¢ used will be 7, 2r/3, /2, and 7/4. These values, while not all inclusive, are

expected to provide a good representative sample of results reflecting practical use.

The final parameter used is the amount of optical activity p. The value of p
is dependent on the wavelength of the incident polarization and is given per unit
thickness. For BSO, the amount of optical activity for 633nm wavelength light
is p = 22°/mm (10:154). In the experimental device, a helium-neon laser with
wavelength of 633nm is used for the read beam. To relate the analysis to experimental
values, the value of p will therefore be set to 7 /9, or 20°/mm. A value of #/4.5, or

40°/rmam, will also be used for comparison.

Results for Orientation of Eigenstates

System Configuration and Results The system configuration of Jones matrices

equivalent to the PRIZ set-up can be thought of as

E' = ARMRE (35)

24




} where E and E’ are the electric field column vectors representing the input and
output polarization of the light, respectively; R and R’ are rotation matrices which

transform the incoming polarization into the a coordinates and back out into the

‘ crystallographic coordinates; M is the matrix of the crystal itself; and A is the
orthogonal analyzer. The rotation matrices are given as
cosa —sina cosa  sina
R= and R = (36)
sina cosa —sina coso

for the situation as shown in Figure 6. The intensity of the output polarization is

the main concern for the imaging device. The intensity I is found from
1=|EV (37)

which is a matter of squaring the two components of £’ and adding them to give the

intensity (neglecting the scale factor) for the related value of a.

A factor to consider for image quality is the concept of contrast. Contrast as
used here will be defined by the difference between the maximum intensity achieved
for a specific value of the induced transverse field (which is related to ¢), and the
maximum intensity achieved for no induced transverse field. It is desired that the

baseline for the intensity be zero for zero internal electric field (Figure 8).

Linear Input Polarization For the case of input linear polarization, the func-
tional diagram is shown in Figure 9. The term E in Eq(35) actually represents
the state of the light immediately after going through the polarizer, so that travel

through the entire system is given by

E;, cos?y sin vy cosy cosa  sina cosa —sina cos 3
= M
E;, sin 4 cos 7y sin? 5y —sina cosa sina cosa sin 3
(38)

B is the angle of the transmission axis of the polarizer with z{; v = 8 + r/2; and

M is either the linearly birefringent matrix Eq(19), or the elliptically birefringent —#
matrix Eq(21).
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Figure 8. Intensity contrast

To simplify the computations and to simulate the experimental procedure, the
orientation of the input linear polarization will be parallel to the z} axis. This
requires § = 0, and v = 7/2. The thickness z in Eqs(19) and (21) is considered to

be 1/2 mm, the thickness of the experimental crystal.

The expected intensity results using linearly polarized input can be found by
examining the scenario of Figure 10. The linearly birefringent crystal, with its or-
thogonal linear eigenstates, is represented in Figure 10(a) along with the lincarly
polarized input £;,, and a linear analyzer orthogonal to E;,,. The elliptically birefrin-
gent crystal, with its orthogonal elliptical eigenstates, is represented in Figurc 10(b)

along with the same input- analyzer setup.

The linear birefringence scenario, Figure 10(a), will be examined first. If the
linear eigenstates are aligned with the crystallographic axes, then £, will be parallel
to one of these eigenstates, and pass unchanged through the crystal. Upon exiting
the crystal, the polarization will be completely crossed with the direction of the

analyzer, causing extinction of the output intensity. This is expected to happen as
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Figure 9. Test configuration for linear polarization

a goes through multiples of 7 /2.

For the elliptical birefringence scenario, Figure 10(b), the linear input polar-
ization will never be passed unchanged (except for @ = 7/4 in a half wave plate)
because it cannot match itself to one of the elliptical eigenstates. It is expected,

then, that a total extinction of the intensity output is not possible for this scenario.

For either scenario, the output intensity is maximum when the eigenstates
are situated at /4 to the crystallographic axes. This is determined by using the
Poincaré sphere to find the orientation of the output polarization of the crystal
for each orientation of the eigenstates. The magnitude of the output polarization
component parallel to the analyzer transmission axis determines which orientation

of the eigenstates causes the maximum intensity output.

The results shown in Figure 11 are for the values £ = 7 and p = 7/9. The
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Figure 10. Linear input for (a) linecar eigenstates and (b) elliptical eigenstatcs
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Figure 11. Inteusity profile for linear input with £ = = and p = = /9

maximum intensity for this case goes to unity because the crystal is acting as a half
wave plate. When the eigenstates are at a = 7 /4, the incident linear polarization

will be rotated 7/2. The output polarization is then parallel to the analyzer, which

passes all of the light.

The results of Figure 11 also show the points where the linear birefringence
leads to a total extinction of the light while the elliptical birefringence doesn’t. The
two curves shown here are very similar because the amount of optical activity is

small relative to the amount of linear birefringence.

The results shown in Figures 24-30 in Appendix D indicate now decreasing the
amount of linear birefringence in relation to the optical activity canses pronounced
separations of the two curves. They also show how the maximum intensity of these

curves decreases with decreasing linear birefringence.

An interesting thing to note in the results of the linear input polarization cases
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is that the output intensity varies as sin? a. This is the directional filtering problem
mentioned in Chapter 1. For example, an input image of a circle, with uniform photon
energy for all directions, will actually have an output image of continually varying
intensity. There is even an axis along which extinction (or near-extinction) occurs.

This results in poor imaging quality.

Circular Input Polarization The configuration for input circular polarization
is similar to Figure 9, except for the polarizer and analyzer now being circular and

orthogonal. The equivalent system in terms of Jones matrices is

E;, bb*  —ab” cosa  sino cosa —sina a
= ' M| (39)
E,, —a*b  aa* —sina cosa sina cosa b

where a = cos(7/4), b = isin(r/4), and M again is either Eq(19) or Eq(21).

The scenarios for the circular input polarization are shown in Figures 12(a)
and 12(b). The analyzers in these cases are orthogonal to the input polarization
because they would completely pass circular polarization of the opposite handedness

to the input polarization.

By using the Poincaré sphere, the output characteristics of these cascs can
be found easily. Recall that the effects of birefringence are determined by rotation
of the input polarization about the axis on the sphere containing the eigenstates.
For either the linear or elliptical eigenstates in this scenario, the starting point of
the rotation is one of the poles (for left or right circular input). A change in the
orientation of the eigenstates corresponds to traversal around the latitude containing
those eigenstates. Now because the starting point of rotation is a pole, the ending
point will always stop on the same latitude. This mecans the ellipticity of the output

polarization will be the same for any orientation of eigenstates.

The circular analyzer has no preferred orientation in terms of coordinate sys-

tems. Therefore, any number of polarizations with the same ellipticity, regardless of
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Figure 12. Circular input for (a) linear eigenstates and (b) elliptical eigenstates
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orientation, incident on the analyzer should give the same value of output intensity.

A constant output over all values of a is then expected for circularly polarized input.

Figure 13 shows that indeed the output intensity is constant for all a. This

particular case involves £ = 7 and p = 7/9. The curve for linear birefringence

linear birefringence —
elliptical birefringence — o~ — -
1 = = ——— = e == —
-t
St
2
>
B
]
=
0
0 Orientation of Eigenstates (radians) 2-7T

Figure 13. Intensity profile for circular input with § = = and p = =/9

goes to unity because a half wave plate reverses the handedness of circular polar-

ization, allowing it to match the circular analyzer. The results of Figures 31~3%in

Appendix E show how that maximum intensity decreases with decreasing linear bire-

fringence, and larger vaiues of optical activity cause a more pronounced separation

of the two curves.

The results of the circular input polarization with circular analyzer suggest

great promise for imaging applications using the PRIZ. The problem of directional

filtering is solved. Also, good contrast quality is possible, because for no transverse
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field the input polarization will be extinguished by the analyzer, and the intensity

level continuously increases as ¢ increases.

Elliptical Input Polarization The final input polarization to investigate is el-
liptical. Again the system configuration is similar to Figure 9, where the polarizer
and analyzer are now elliptical and orthogonal. The first eigenstate of Eq(34) will
be the form used for the input, which will always have the major axis oriented in

the z} direction. The Jones matrix system is

E, dd* —cd” cosa  sina Iy cosa —sina c (40)
E,, —cd  cc* ~sina cosa sina  cosa d

where ¢ = ip and d = (T — £), M is defined in the usual way.

The scenarios for the elliptical input polarization are shown in Figures 14(a)
and 14(b). The analyzers here are orthogonal to the input polarization by having

opposite handedness and interchanged major and minor axis directions.

The linear birefringence case of Figure 14(a) indicates that for any orientation
of the linear eigenstates, the elliptical input will never match those states completely,

so no extinction of the output can occur.

For the elliptical birefringence case of Figure 14(b), at successive 90° orienta-
tions of the eigenstates the input ellipticity will match that of the eigenstates, but
the handedness will be the same only for successive 180° orientations. This suggests
that the output will be totally extinguished only at these 180° intervals, while at the

alternate 90° intervals the output will not be totally extinguished.

Figure 15 shows results for the case of £ = = and p = 7 /9. It is seen that the
linear birefringence output is never fully extinguished, while the situation described
above is evident for the elliptical birefringence results. The maximum intensity is

seen to be at orientations of a = n/4.

Figures 38-44 in Appendix F show results for the other values of £ and p.

Again, as the value of the linear birefringence decreases, the maximum intensity
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Figure 15. Intensity profile for ellipticai input with { = = and p = =/9

decreases. Also, as the amount of optical activity is increased, the separation of the

curves for linear and elliptical birefringence become more pronounced.

The cases depicted by the elliptical input polarization do not have merit as
far as imaging applications. Results show that not only is the output intensity
directionally dependent and asymmetric, but also the system is impractical in that

the polarizer and analyzer change forms for differing values of £ and p.

Results for Variable Linear Birefringence

Images from a scene incident on the PRIZ typically contain areas of differen:
incident photon energies; they also induce different directions of the transverse field
in the device. The amount of incident energy is directly related to the induced
linear birefringence (see Eq(33)). It is of interest then to determine the effects that

variable linear birefringence has on the output intensity of linearly and elliptically
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birefringent crystals.

The results of the previous section indicated that circular input polarization
with an orthogonal circular analyzer did away with the directional filtering problem
of the PRIZ imaging device. For this reason, circular input polarization will be the
only polarization investigated in this section. The orientation of the eigenstates is
no longer a factor, so the matrix system used for the analysis is

E., bb*  —ab® a
= M (41)

2 ~a*d  aa* b
where a = cos(w/4), b = isin(x/4), and M is Eq(19) or Eq(21). The variable for the
M matrices will be £, which will range from 0 to = (the half wave point), and the

amount of optical activity will be p = n /9.

The results of this case are shown in Figure 16. It turns out that the curve for
linear birefringence follows a sin? £ pattern, while the curve for elliptical birefringence
varies only slightly from this. The reason for only the slight variation is the relatively

small value of optical activity.

The ideal situation, in terms of interfacing the PRIZ output intensity with a
display gray scale, would have resulted in the output curves being linear. However,
the results shown here characterize this output well, and can be used in future display

design considerations.

Ezperimental Relevance

In experiments involving BSO at AFIT and elsewhere, the effects of optical ac-
tivity have always been compensated for by simply setting the linear analyzer with a
bias so that with no voltage applied, the rotated linear light would be extinguished.
For example, in the AFIT PRIZ configuration, the analyzer was offset by approxi-
mately 10° (3:11). The experimental results using this configuration exhibited the

asymmetry of output intensity similar to the elliptical input cases previously shown.
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Figure 16. Output intensity as a function of linear birefringence with p = 7/9

The system was modeled and test cases run to determine if any insights to this
problem could be gained. The results for the case of a linear input polarization with
£ =27/3, p=7/4.5, and the crossed linear analyzer rotated an extra =/9, are given
in Figure 17. These results show much similarity with the previous linear input cases
discussed, and the problem of asymmetry is not apparent. In fact, all the cases run
for this system configuration exhibited the same trends as the previous linear input
cases, except for output shifted by the amount of the bias, and no asymmetric output

was found.

In the article by Owechko and Tanguay (9:630-651), it was mentioned that
a nonzero extinction of the analyzer causes the output intensity for linear input to
become asymmetric. From the results just given, this is not the case. The AFIT
lab configuration was investigated, and it was found that the input polarization for

the read beam was not quite linear light. This problem was modeled by making the
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Figure 17. Output intensity for biased linear analyzer with § =27 /3 and p = =/4.5

input polarization E elliptical:

o cos
E = p (42)
isin 8
where 3 = 7 /36, providing a very small ellipticity. The results for a representative
case of £ = 2x/3 and p = r/9 are shown in Figure 18. The results, which are similar

in form for other combinations of { and p, show clearly the asymmetric output

intensity for both elliptical and linear birefringence cases.

Because circular polarization was shown to be best for imaging applications,
the case of not quite circular polarization (analogous to the slightly elliptical case

above) was also investigated, with 8 = 7/4.245 in Eq(42). The system used a circular

analyzer.
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Figure 18. Elliptical input with linear analyzer; £ = 2x/3 and p = 7/9

The resuits in Figure 19 show that an asymmetry still occurs, but the maximum
to minimum modulation of output intensity is less than for the analogous linear case.

This reinforces the suggestion of using circular input polarization.

The final area looked at involved predicting the orientation of the crystal based
on the direction of the asymmetry of output intensity as shown in Figure 18. The
results of Figure 18 were obtained for the crystal orientation shown in Figure 22,
where the input polarization was aligned with the {112) direction. )

Using the relation between the eigenstate direction and transverse field iz
tion (Eq(32)). the simulation resnlts agree with Capt Gardner's test resulis (3) in

that the extinction occurs along the {112) direction, and the higher intensity of the

asymmetry occurs in the negative (110} direction.

The crystal orientation was rotated 90° about the (111) axis for simulation

(Figure 20). The results shown in Figure 21 are still consistent with the discussion
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Figure 19. Elliptical input with circular analyzer; £ = 27/3 and p = =/9

above; i.e. the extinction is along the (112) direction. and the higher intensity of the
asymmetry is in the negative (110) direction. Therefore, the asymmetry direction is

predictable if the crystal orientation is known.

Summary

This chapter presented a discussion of the Jones matrix configuration used
for computations, the concept of polarizer-analyzer pairs, variables and parameters
used in the computations, and results of these computations. The first set of trials
consisted of linear, circular, and elliptical input polarizations with respective orthog-
onal analyzers. Comparisons of linear and elliptical birefringence among these cases
showed that, especially for smaller values of ¢ (representing linear birefringence) ap-
proaching the optical activity p, the intensity outputs of the elliptically birefringent

crystal were noticeably different from the corresponding linearly birefringent crystal.
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Figure 20. Crystal orientation for asymmetry test

As far as imaging quality characteristics, the circular input polarization case
gave results which were most promising in relation to contrast and symmetry of the
output, since no directional filtering was evident with this case. The response of
variable linear birefringence was determined to follow a sine squared pattern, which
is of concern for displaying the output imagery. Finally, actual experimental results
were used to show that asymmetric output intensity direction can be determined by

the crystal orientation of the PRIZ device.
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Figure 21. Elliptical input with linear analyzer for crystal as oriented in Figure 20




IV. Conclusions and Recommendations

A description of an elliptically birefringent crystal was developed using two
separate but consistent mathematical forms: the Poincaré sphere and Jones matri-
ces. These methods were used to show that the crystal is represented by elliptical
birefringence, or elliptically polarized eigenstates. Furthermore, the elliptical bire-
fringence was shown to be a nonlinear combination of the linear birefringence and

the circular birefringence (optical activity).

The results of a mathematical representation led to an investigation of an
imaging device knowr as the PRIZ, which uses the photorefractive, optically active
crystal BSO. A series of computations using Jones matrices was done to compare
performance of a device where optical activity is factored in with a device where
optical activity is ignored. Variables and parameters used in these computations
included type of input polarization, values of linear birefringence and optical activity,
and the orientation of the eigenstates of the crystal with respect to the direction of

the transverse internal electric field.

Results of analysis showed that for values of the linear birefringence close to
that of the optical activity, the intensity curves for elliptical birefringence made a
noticeable change from the linear birefringence curves. Also, the directional filtering
problem for linear polarization already mentioned in the literature was shown to
be present for elliptical polarization as well. Circular input with an orthogonal
circular analyzer, however, showed no such filtering. Since imaging quality is directly
affected by this filtering, it is recommended that circular input polarization with an

orthogonal circular analyzer be used in future applications of this device.

Other results related to the experimental procedure showed that an asymmetry
of output intensity developed for even slightly elliptically polarized input. This

asymmetry was not present for perfectly linear input, which leads to the conclusion




that — should directional filtering be acceptable but the asymmetry not — great
care should be taken to produce polarization as linear as possible. By the same
token, slightly non-circular input polarization also causes an asymmetry (though
not as pronounced as the linear case), so circular input applications should have

polarization as circular as possible.

Perhaps the most pertinent aspect of these results is it appears that, for the
application of BSO as used in the AFIT PRIZ device, optical activity can probably
be ignored without much deviation from results obtained with including it. This does
not necessarily mean that for different materials or other applications this should be
the case. This thesis has laid the groundwork for future investigations involving

elliptically birefringent materials, which can now be carried out with greater casc.
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Appendix A. PRIZ Spatial Light Modulator

The PRIZ device uses photorefractive BSO with the electric field of the linear
electro-optic effect applied in the longitudinal direction (11:816). For this applica-
tion, this direction is the direction of propagation of the incident light E (Figure 22).

The crystallographic axes are chosen from crystal symmetry to be the (111) cut. If

Vv
all

\

AN
N IR I P Y
NN

BSO

o=

Figure 22. Crystal orientation of (111) PRIZ device, with applied field parallel to
direction of propagation

this is considered the z direction of a right-hand coordinate system, then the &+ and
y directions are (112) and (110), respectively. The material is cut so that the (111)

surfaces are plane parallel.

The basic operation of the PRIZ is depicted in Figure 23 (3:12). An image can
be written onto the BSO crystal (3) by means of the photorefractive effect, which

alters the indices of refraction at locations where the object (2) illumination falls.
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Figure 23. PRIZ imaging configuration

This stored information is retrieved using a linearly polarized read beam (4), which is
modified locally by the induced birefringence in the crystal. An analyzer (6) crossed
with respect to the polarizer (5) will then give the intensity variation of the image
via amplitude modulation. This image can be detected (7) by a television camera

or other such device as suited to the application (9:636).




Appendix B. Flectromagnetic Description of Elliptical

Birefringence

The material equation, which describes the effect of the electromagnetic field

on the material, is given by

-

where D is the electric displacement vector describing the induced polarization, £
is the electric field vector, and ¢ is the dielectric tensor which relates the two. The
dielectric tensor is unique to each material and the form is dependent on crystal
symmetry. For example, the crystal point group 23, of which BSO is a member, has

the dielectric tensor

€11 0 0
€e=| 0 ¢; 0 (44)
0 0 €11

This is the form for the crystal oriented in the principal coordinate system, i.e. Dis

parallel to £ along these axes.

For much work in crystal optics, it is assumed that € is a constant independent
of other influences on the crystal. With optical activity, however, € is dependent on

the direction of propagation E. The form of the dielectric tensor in this case becomes
€;(k) = €+ €0 Y giji ki (45)
1

where ¢;; are the tensor components without optical activity, €, is the permittivity
of free space, K| are the components of the specific direction of propagation K, and
gi; are third order tensor components which represent optical activity (7:120-121).

Summation over repeated indices shall be assumed unless otherwise stated.

If a medium doesn’t attenuate transmitted waves, then the symmetry of ¢, is

€ = € (46)
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where ¢; is the complex conjugate of ¢j;. This means that ¢; is Hermitian if the

field energy is conserved. If the energy is invariant under time reversal, then
eii(—k) = €;i(k) (47)

Optical activity does not contribute to the electric energy density, so the conditions

of Eqs(46) and (47) apply to Eq(45). This leads to the symmetry of

gijl = G
gijt = —Gji (48)

Therefore, it is strictly an imaginary tensor which is antisymmetric in the first two

indices. Since g;; is purely imaginary, it can be represented by

gijl = VYijt
Yist = —Yi (49)

where +;; is a polar third rank tensor. (Tensors can be described as either polar
or azial. A polar tensor transforms like a product of coordinates for both rota-
tions and rotation-inversions, whereas an axial tensor transforms like a product of
coordinates under rotations, but like (-1) times the product of coordinates under

rotation-inversions (7:22). See Appendix C for a related discussion.)

Because of the antisymmetry associated with +;;;, the optical activity term can

be represented by a second rank tensor gm;, known as the gyration tensor:

Viit = 3 EijmGmi (50)

where ¢;;,, is the antisymmetric triple product, and m represents contracted indices
such that 23 — 1, 31 — 2, and 12 — 3. The antisymmetric triple product is defined
by
1 for 1ym = 123,312,231
€ijm ={ —1 forijm = 321,132,213 (51)
0 for all others
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L The gyration tensor is an axial tensor because the inversion of the coordinate system
would not necessarily change the signs of the components of the tensor (8:40). So
under the inversion symmetry (1), gm goes into its negative. This leads to the

fact that any centrosymmetric crystal cannot exhibit optical activity. Appendix C
? describes the form of the gyration tensor for BSO, and how it was derived using

crystal symmetry.

A vector 5, known as the gyration vector, can now be defined such that it has

components
Gm =3 gmlG, (52)
1
Now the dielectric tensor of Eq(45) can be represented by
&i(F) = €i; +i€0 ) €ijmGm (53)
m
The material equation, which has the form
D; =) ei;(k)E; (54)
b)
can now be expressed as

D; = ZC;J’EJ' + ico(l:}" X é). (55)
j

Equating this expression containing optical activity with the relation between D and

E from Maxwell’s equations,
D; = n}(eE; — eKi(K - E)) (56)

will lead to a solution for the two independent indices of refraction n! and n!! which
are the eigenvalucs of the eigenstates of the crystal. If it is assumed that the crystal
is oriented in the principal coordinate system, then the dielectric tensor € will have
only three diagonal terms, represented by ;. It is assumed that the magnitude of G

is much less than ¢;, so that solutions involving G can be thought of as perturbations
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of solutions for which G = 0. For the case of G = 0, the two independent indices

are represented by n’ and n”. Using Eqs(55) and (56) to eliminate D; gives
Ei(e; — eon?) + en*(E - K)K; — ieo(G x E); =0 (57)
The secular determinant of the homogeneous equations of Eq(57) is given by
€ (Z e.-K?) ni—- ¢ ():,-’»;c;ej (K,-2 + KJ?) - e%l]( X élz) n?
‘ +(a6es — €T 6:G) =0 (58)

By grouping the terms dependent on G on the right side of Eq(58), two characteristic

solutions for n? can be determined from

2y 2 m _ 5i&G = en?|K x GI?
n=n)n*=n")= S k7

where in the absence of optical activity, the right side of Eq(59) goes to zero. For a

(59)

cubic crystal, gn? = ¢ = €; = €3, so Eq(59) simplifies to

(n? =n")n? = n") = (K - G)? (60)

-
’

The term (K

. é) is a scalar which can be represented by g, where

9= ImKnK, (61)
m,l
Equation (60) is now written as
(nt=n") (n? =) = (62)

The positive solutions to Eq(62) are n! and n’/, which are the eigenindices for the
normal modes of propagation in the linearly birefringent, optically active crystal.
(Remember that although BSO is a cubic crystal, a field applicd induces a birefrin-
gence.) The phase difference A (per unit thickness) between these two normal modes
is given by

A:%(n'—n”) (63)
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where ), is the specific wavelength of the incident light. Now

(nf = ni1)? = 4 nlf _ 3 (i) (64)
Also, the roots of Eq(62) are n'* and n'””. So it follows that
(n’ ~ n”)2 =n"4+n" -2 (nanm - 92)1/2 (65)

Using Eq(65) and the assumption that ¢ < n'n”, Eq(63) can be written

2 2
A2= 4; [(n’—n")2+ g ] (66)

nlnll
If 7 is defined as a mean refractive index equal to (n'n”)!/2, then Eq(66) becomes
A? = 6% + (2p)? (67)

where § is the linear birefringence, equal to 2:(n’ —n"), and p is the optical rotatory
g q o™ p

power, now defined as

p=—2 (68)

Eq(68) can be found from setting n’ = n" in Eq(62), solving for the difference n’ —n'!,

and then substituting that into Eq(1).
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Appendix C. Gyration Tensor for Crystal Point Group 23

Consider a tensor in an unprimed coordinate system which undergoes a sym-
h. metry operation into a primed coordinate system. The respective tensor components
for each coordinate system are still required to be equal. Following the arguments of

Juretschke (7:24), a practical way to go about this is to consider only the generat-

ing elements of the symmetry group. If these generating elements contain values of
+1 only, the transformation is simplified. For example, for the point group 23, the

generating elements are 2 and B:

-1 0 0 010
2=]1 0 -1 0 B=10 01 (69)
0 0 1 100

where 2 defines a twofold rotation about the z axis, and B defines a threefold rotation

about a cube body diagonal (7:195). Taking the B element first, the transformation

gives
ap = Qp2
Q2 = Qo3
)3 = Q)
an = gz
Qa2 = Q33
Qa3 = Qg
Qag) = Qg2
Q32 = (g3
33 = Qqy (70)

So the relations from this element are

Q13 = Q9 = Q33
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Qi = Q3= Q3

a3 = an = az (71)
Then in a like manner applying this tensor to the generating element 2 results in

Qy1 = Q22 = Q33
ap=ap=0a3 = —apy=-azn =_0

aqz=an =a3 = —ap=-—o3p=0 (72)

The results of Eq(72) then lead to the general second order tensor

a1y 0 0
Qai; = 0 a1y 0 (73)
0 0 (8 281

which is directly analogous to the gyration tensor so that for the 23 point group

gn 0 0

gni=1] 0 gy O (74)
0 0 gn
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Appendix D. Output Intensity for Linear Input
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Figure 24. Intensity for £ = 2x/3 and p = =/9
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Figure 25. Intensity for £ = x/2 and p = #/9
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Appendix E. Output Intensity for Circular Input
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linear birsfringence J—
elliptical birefringence m o —_
1t T
"
)
>
‘A
=
2 -
0
0 Orientation of Eigenstates (radians) 2

Figure 32. Intensity for £ = #/2 and p = =/9
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Figure 34. Intensity for £ = 7 and p = x/4.5
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Appendix F. Output Intensity for Elliptical Input

linear birefringence —

eiliptical birefringence — — @ =

1
<
>
\ |
] n
0
0 Orientation of Eigenstates (radians) 2°m
Figure 38. Intensity for £ = 27/3 and p = 7/9
linear birefringence ————
elliptical birefringence = — — —
1.
= !
2 Y 7 Y 7
z 4 }
V|4 Y|
\ . \ U
{ \
VANIRAR
\| 4
|/ 4 \
0
0 Orientation of Eigenstates (radians) 27

. Figure 39. Intensity for £ = x/2 and p = 7/9

62




Intensity (arb.)

Intensity (arb.)

linear birefringence m———

elliptical birefringence —w— — —

PANZNIZN 70N

<

Orientation of Eigenstates (radians) 27
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